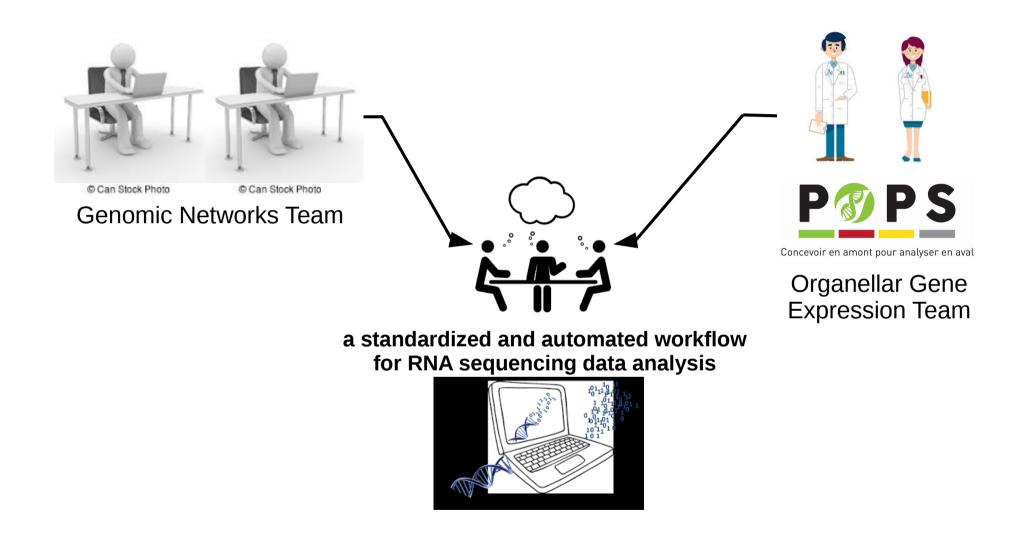
Transcriptomics data analysis

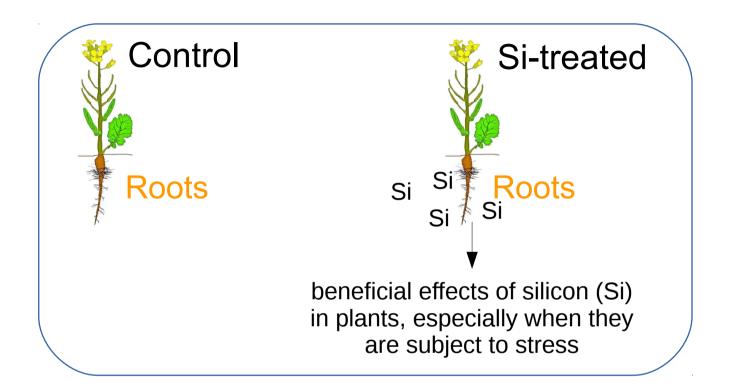


Workshop inter-CATIs SysMics – Empreinte

Jeudi 16 octobre 2019 - Institut des Systèmes Complexes, Paris

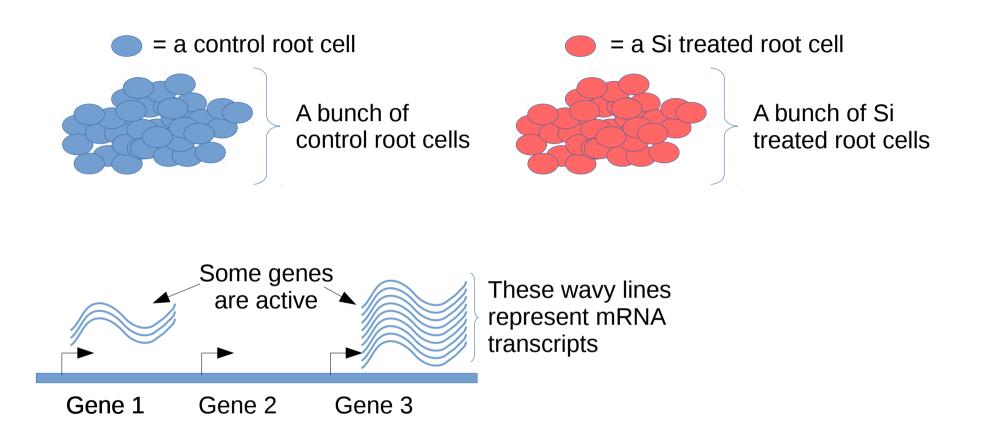
Transcriptomics data analysis

- An introduction to RNA-seq
- Steps to Illumina sequencing
- BCL to Fastq conversion
- RNA-seq data analysis:
 - → Bioinformatic analysis
 - Statistical analysis : differential expression analysis

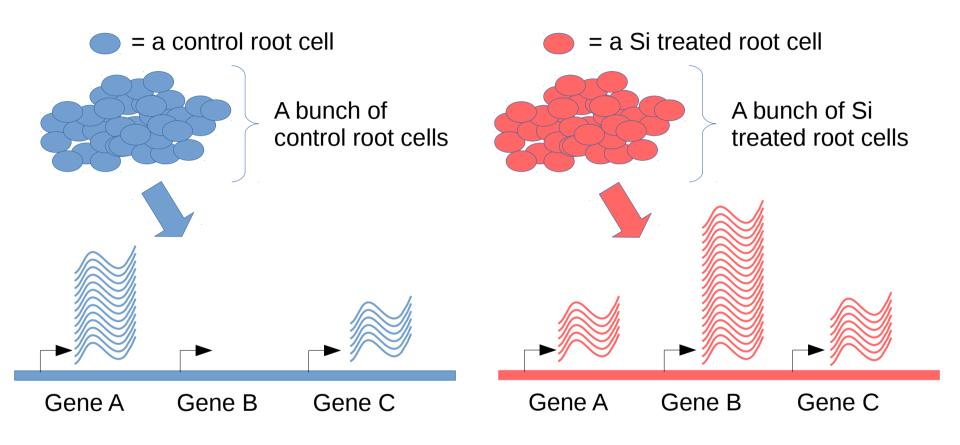


What genetic mechanism is causing the difference ?

This means whe want to look at differences in gene expression



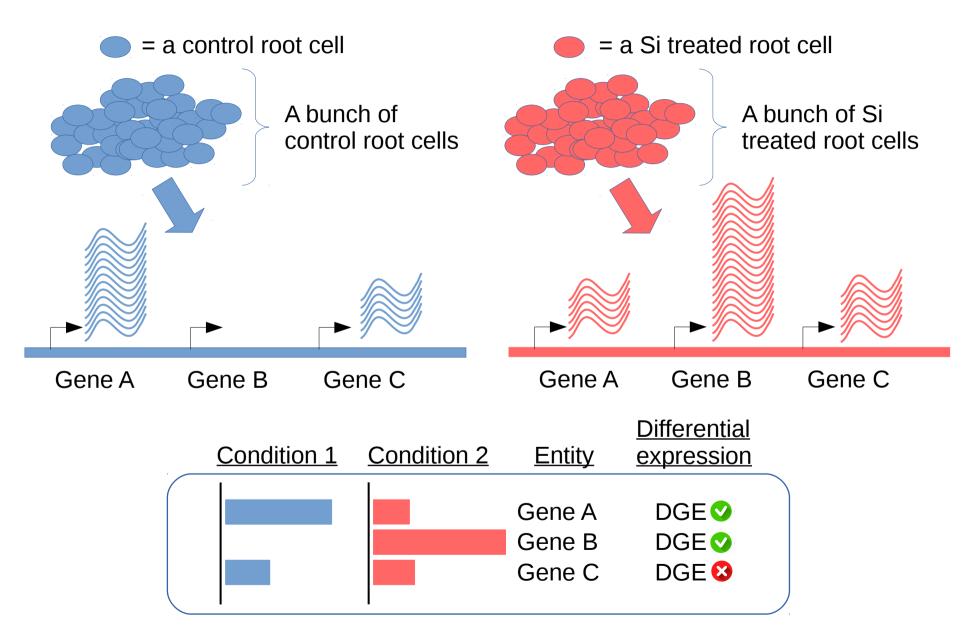
Principe du RNA-seq: abondance des ARNm reflète l'expression des gènes.



We can use RNA-seq to measure gene expression in control root cells ...

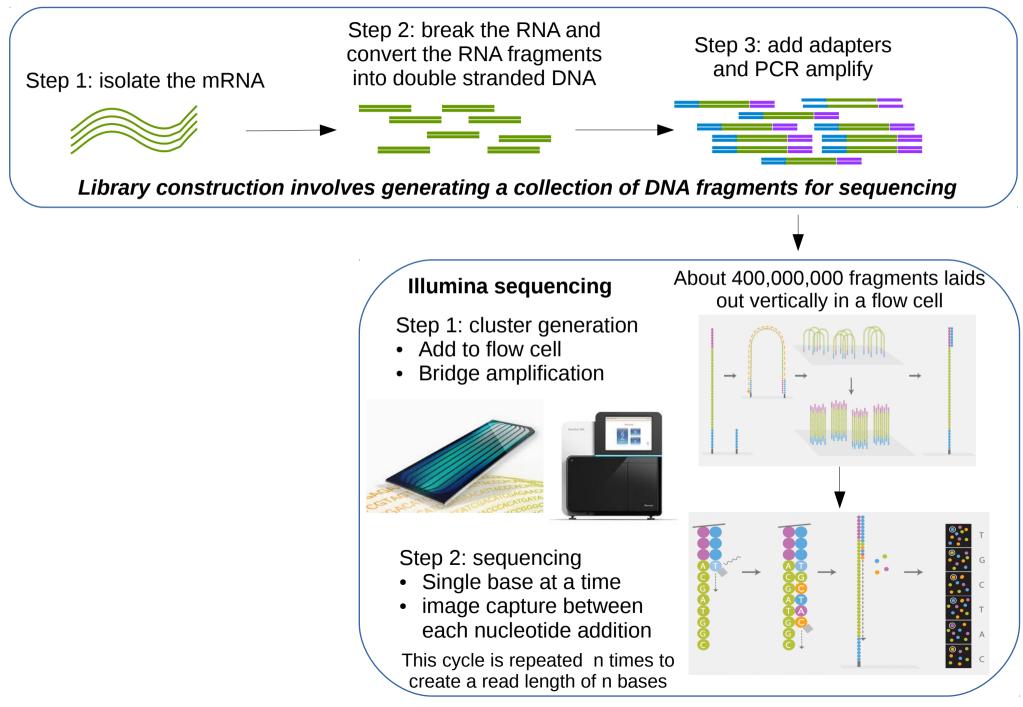
... then use it to measure gene expression in Si-treated root cells ...

RNA-seq focused primarily on quantifying gene expression between samples in different groups, treatments, time-points, ...



The goal is to identify genes whose expression level changes between conditions

Steps to Illumina sequencing



BCL to Fastq conversion

Here is an example of a single entry in a FASTQ file :

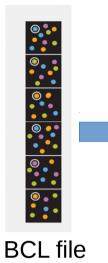
1. @read name with information about the sequencing run and the cluster.

2. The sequence (the base calls; A, C, T, G and N).

3. A separator, which is simply a plus (+) sign.

4. The base call quality scores encoded as a single byte ASCII characters to represent the numerical quality scores

BCL to Fastq conversion



Here is an example of a single entry in a FASTQ file :

1. @read name with information about the sequencing run and the cluster.

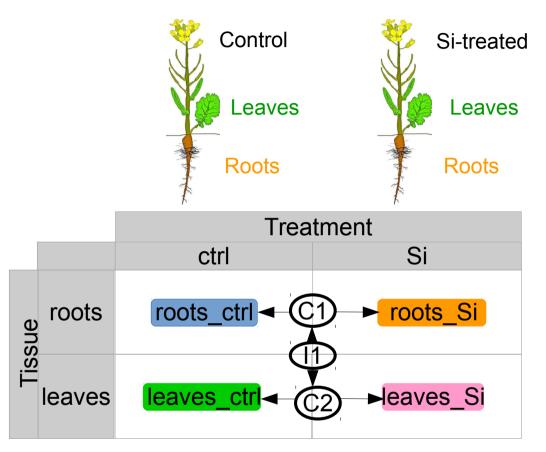
2. The sequence (the base calls; A, C, T, G and N).

3. A separator, which is simply a plus (+) sign.

4. The base call quality scores encoded as a single byte ASCII characters to represent the numerical quality scores

Images transformed into reads and base call quality scores => fastq file

A example of RNA-seq experiment

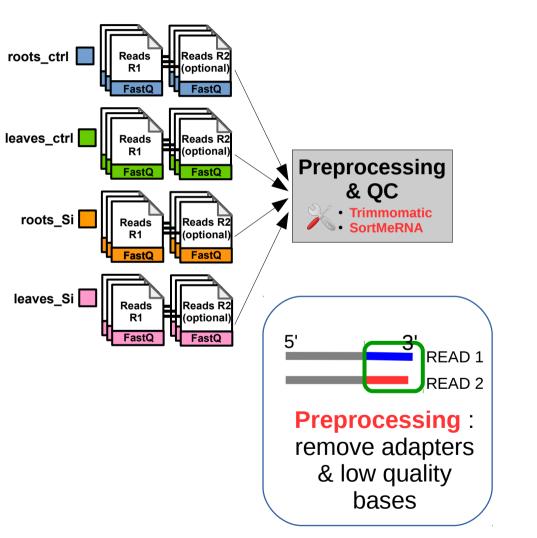


Several contrasts can be tested:

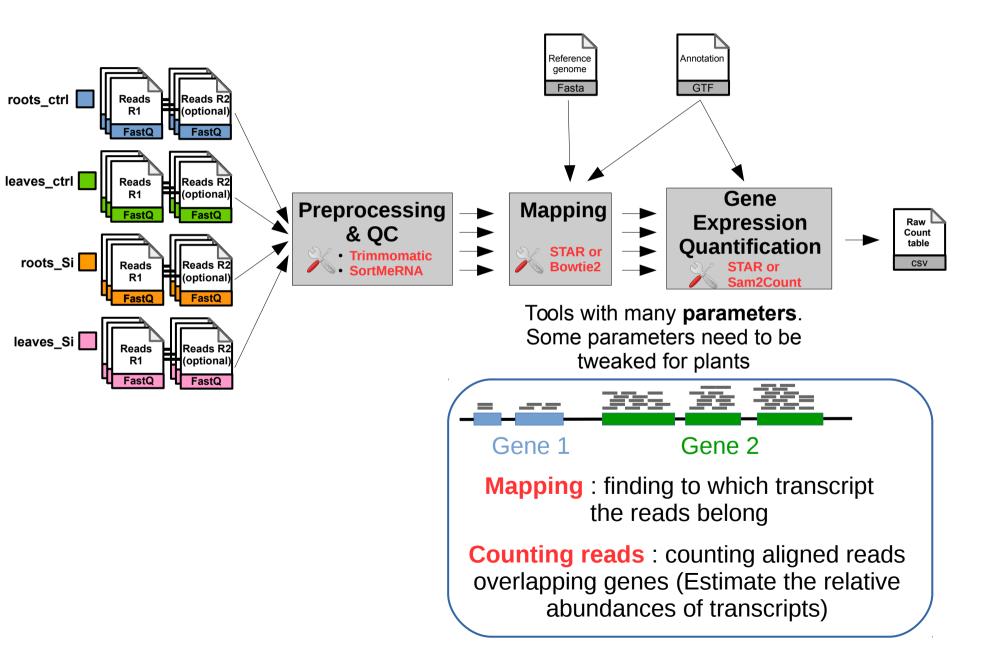
- In roots, is there a silicium treatment effect (C1) ?
- In leaves, is there a silicium treatment effect (C2) ?
- Is silicium effect similar for roots (C1) and leaves (C2) ?

Specific DE model: batch + tissue + treatment + tissue : treatment

Bioinformatic data analysis



Bioinformatic data analysis



Raw count data

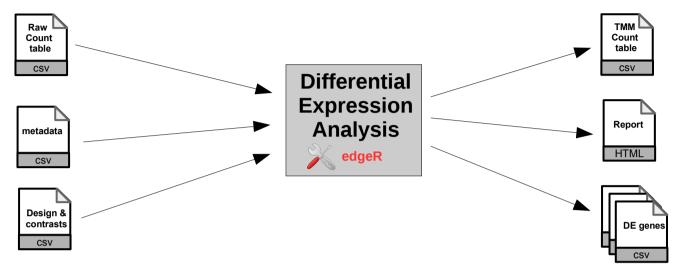
Gene	Sample #1 Sample #2	12 samples
id	Leaf_ctrl_1 Leaf_ctrl_2	I
BnaA01g00010D	136 163	}
BnaA01g00020D	209 184	ł
BnaA01g00030D	414 306	j
BnaA01g00050D	1103 1054	ł
BnaA01g00060D	27 30)
BnaA01g00080D	52 67	,
BnaA01g00210D	3923 3573	3
BnaA01g00240D	0 0)
BnaA01g00270D	118 43	}
BnaA01g00280D	1446 1214	ł

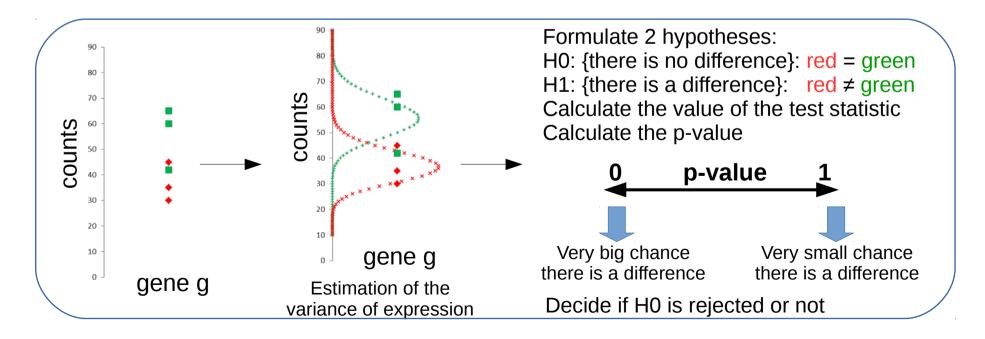
Sample #1 has 136 reads assigned to BnaA01g00010D gene

52,962 genes

library size = the total number of mapped reads from a sample

Statistical data analysis





Metadata

label	tissue	treatment	replicate
Leaf_ctrl_1	Leaf	ctrl	repbio1
Leaf_ctrl_2	Leaf	ctrl	repbio2
Leaf_ctrl_3	Leaf	ctrl	repbio3
Leaf_Si_1	Leaf	Si	repbio1
Leaf_Si_2	Leaf	Si	repbio2
Leaf_Si_3	Leaf	Si	repbio3
Root_ctrl_1	Root	ctrl	repbio1
Root_ctrl_2	Root	ctrl	repbio2
Root_ctrl_3	Root	ctrl	repbio3
Root_Si_1	Root	Si	repbio1
Root_Si_2	Root	Si	repbio2
Root_Si_3	Root	Si	repbio3

Normalized sample names

TMM normalization of count data

https://support.bioconductor.org/p/73844/

TMM (Trimmed Mean of M-values)

id	dyw2_HO _rep1	dyw2_H O_rep2	dyw2_WT _rep1
AT1G01010.1	328	656	1312 🥕
AT1G01020.1	124	248	129 🔪
AT1G01030.1	90	180	93 🔪
AT1G01040.2	463	926	480 🔌
AT1G01046.1	4	8	4
Taille librairie	1009	2018	2018
	Profondeur de séquençage X 2		Biais de composition X 0,5

L'expression d'un gène ne dépend pas seulement de la profondeur de séquençage. Elle dépend aussi du niveau d'expression des autres transcripts. Même si les tailles de librairies sont identiques entres échantillons, des gènes peuvent masquer l'expression d'autres gènes.

EdgeR use an elaborate normalization method called Trimmed Mean of M-values (TMM).

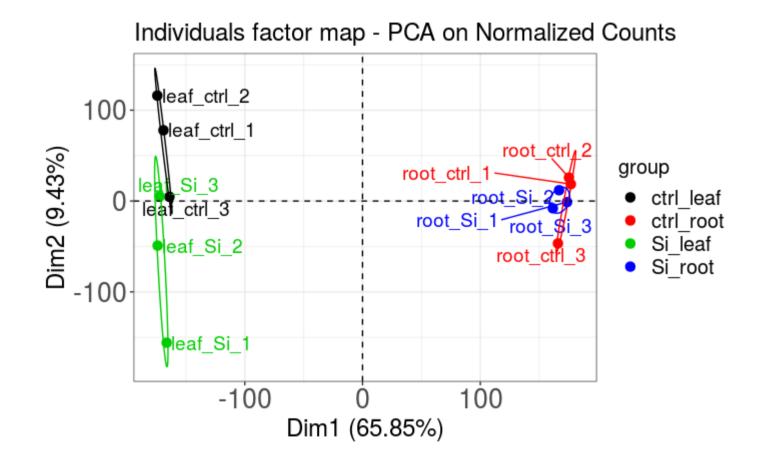
Normalized count table

Id BnaA01g00010D BnaA01g00020D BnaA01g00030D BnaA01g00050D BnaA01g00060D BnaA01g00080D leaf_ctrl_1 197.198152800527 303.047161289045 600.294376907486 1599.33501866898 39.1496332765752 75.3992937178485

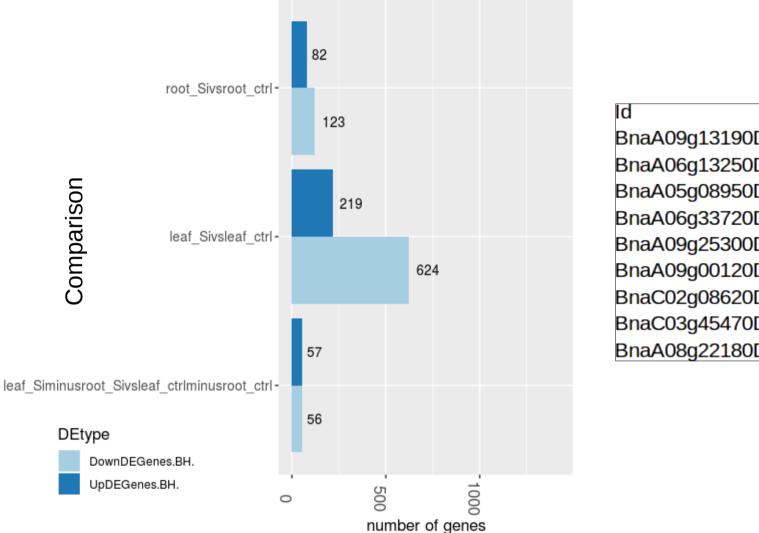
leaf_ctrl_2 289.047591800266 326.286852093551 542.62922141645 1869.0562071011 53.1989432761225 118.810973316674

The observed counts of the features cannot be directly compared across samples, since there are differences in sequencing depth across libraries. The simplest normalization would involve rescaling counts by the library size (i.e. the total number of mapped reads from a sample). This normalization technique, however, is not always effective since few, very highly expressed genes can consume a substantial proportion of the total library size, causing the remaining genes to be under-sampled in that sample. EdgeR use a more elaborate normalization method called Trimmed Mean of M-values (TMM). It relies on the hypothesis that most features are not differentially expressed.

PCA on normalized counts



DE gene lists



	adjusted.PValue	
13190D	4.82783933809054e-07	
13250D	1.84961647978623e-06	
08950D	1.36237608815255e-05	
33720D	1.36237608815255e-05	
25300D	1.36237608815255e-05	
00120D	1.3874394551399e-05	
08620D	1.3874394551399e-05	
45470D	2.18598188783134e-05	
22180D	3.16686328983066e-05	

Conclusion

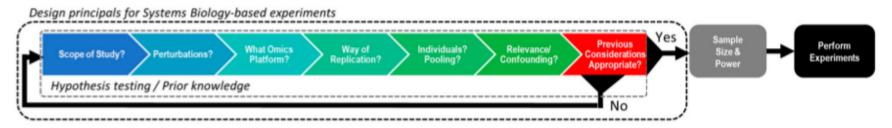


Figure 1. A conceptual model for designing a systems biology experiment.

A high quality experimental design is the key to success for any multi-omics study

