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THE “OMICS” CASCADE

• “omics” data = 
collection of data at 
the scale of the whole 
organism

Þ Assessment of 
phenotypic changes 
following exposure to 
one biological factor

ARNm = TRANSCRIPTOMICS

Proteins = PROTEOMICS

ADN = GENOMICS

PHENOTYPE

Metabolites = METABOLOMICS

Enzymatic reaction



DATA FUSION
• « Combination of multiple omic datasets in order to develop 

multivariate models that are predictive of complex phenotypes » 
(Ritchie et al., 2015)

Þ Extraction of complementary information, on the whole biological system
• Biological assumption (accepted): link between functional levels 

(Günther et al., 2014)
• Aim: fusion of transcriptomic and metabolomic data

Þ Assessment of correlations between the two functional levels and 
identification of genes and metabolites markers of exposure to the 
studied factor

Intégration



• Transcriptomics = first level of integration
– Early response
– Understanding of cellular activity modulations (Mele et al., 2003)

• Metabolomics = final level of the “omics” cascade
– Integrated status of genetic and environmental factors = 

“Metabolomics is a crucial element in bridging the difference between 
the genotype and phenotype of an organism” (Fiehn, 2002)

– Metabolites = final phenotypic expression of an organism

TRANSCRIPTOMICS / METABOLOMICS : WHY?



BIBLIOGRAPHY
• Unsupervised method: assessment of correlations between 

features
– Canonical Correlation Analysis (CCA; Lê Cao et al. 2009, Wilms et 

Croux 2016; …)
– Self Organized Maps (SOM; Hirai et al. 2005, Stegmayer et al. 

2012)

• Supervised method: relationship between biological factor and 
“omics” features = Partial Least Squares (PLS)-based methods
– O2-PLSDA (Bylesjö et al. 2007; Bouhaddani et al. 2016)
– Concensus Orthogonal-PLS (Boccard et al. 2013)



AIMS

• Comparison of Canonical Correlation Analysis and Self Organized 
Maps to identify correlated transcriptomic and metabolomic 
features

• Adjust a regression model to assess relationship between factor of  
exposure and correlated features (as identified in the above step)



• CCA (Hotelling, 1936) = multivariate method to assess statistical 
correlations between 2 datasets

Þ Are changes in metabolite concentrations following factor of 
exposure linked to changes in genes expression?

• Maximization of the correlation between a latent variable from the  
transcriptomic block U and a latent variable from the metabolomic 
block V

! = ∑$%&' ($)$ ; + = ∑,%&- ., /,
Þ Computation of weight vectors a and b such that 012 !, + 4(564(78

CANONICAL CORRELATION ANALYSIS (CCA)



PENALIZED CANONICAL CORRELATION ANALYSIS

• BUT…

– High dimensionality of datasets = latent variables lack of 

biological interpretability

– p >> n = computational problems

ÞPenalization needed to select the most important features 

(discernable biological meaning / information)

• « sparse » CCA (Wilms et al., 2016)

– Some weights equal 0 : !"#"+$#%+!&#&+$#'+!(#(
Þ Removal of noisy features = biological interpretability of latent 

variables is improved

– Computation of penalization = cross validation

• mixOmics R package



• SOM (Kohonen, 1982): unsupervised method for projection and 
classification of objects, based on neural networks
– Bi-dimensional lattice (units = neurons)

SELF-ORGANIZING MAPS (SOM)

From Bessai et al. (2002)

SYNAPSES

Bi-dimensional lattice



• SOM (Kohonen, 1982): unsupervised method for projection and 
classification of objects, based on neural networks
– Bi-dimensional lattice (units = neurons) onto which features are 

projected / clustered
• To each feature is associated a vector containing measured values 

for individuals (stimulus)

SELF-ORGANIZING MAPS (SOM)

From Bessai et al. (2002)

SYNAPSES

Bi-dimensional lattice

Features



• SOM (Kohonen, 1982): unsupervised method for projection and 
classification of objects, based on neural networks
– Bi-dimensional lattice (units = neurons) onto which features are 

projected / clustered
• To each feature is associated a vector containing measured values 

individuals (stimulus)
• To each unit is associated a vector of weights (prototype  = synapses)

From Bessai et al. (2002)

SYNAPSES

SELF-ORGANIZING MAPS (SOM)

Weights Bi-dimensional lattice

Features



• Iterative algorithm

• Preservation of the original topology of the data: close features in 
the input space are clustered together into the same unit or into 
neighbor units on the map)

Þ clustering of co-expressed genes and co-accumulated metabolites in 
the same unit

• Package R SOMbrero (Olteanu et al. 2015)

SELF-ORGANIZING MAPS (SOM): ALGORITHM



PARTIAL LEAST SQUARES – BASED METHODS

• O2PLS: generalization of O-PLS to two datasets
– Separate the joint variation (e.g. used to predict metabolite levels from 

transcript profiles, and vice versa)

– Orthogonal : removal of confounding variability (biological, 

experimental, sample collection, …)

– PLS-DA using joint variation to model factor of exposure

Þ Discrimination of observations depending on mycotoxin 
exposure and list of discriminant transcripts and metabolites

Metabolomics

Control

MycotoxinTranscriptomics

Control

Mycotoxin

Joint 

variation

O2PLS

From Bylesjö et al. (2007)

PLS-DA Control

Mycotoxin

Discrimination



MONTE CARLO SIMULATION

• Random generation of artificial data using a defined model =  known 
structure of data

Þ Assessment of ability of methods to recover this structure

• Dataset sizes
– n=10 observations / group

• Criteria
– Sensitivity: ability of a test to give a positive result when an hypothesis 

is true (true positives)

– Specificity: ability of a test to give a negative result when an hypothesis 
is false (true negatives) 

– R²: proportion of explained variance 

– MSEP: prediction error = how well does the model classify individuals 
into the right group?

P transcripts q NMR features

1000 100

5000 500

10000 700

12000 788



RESULTS : sparse CCA / SOM



% of explained variance –
Metabolomics

RESULTS : O2-PLSDA

% of explained variance –
Transcriptomics

MSEP

Sparse CCASOM



Biological application



• Pig: rich-cereal food

• Fusarium: contaminant fungus of cereal

• DON: secondary metabolite of Fusarium
– Acute and chronic disruptions on animals (gastro-intestinal tract)

Þ Pigs are particularly exposed to DON
Þ Identification of markers of exposure to mycotoxins is 
important for animal healthcare

CONTEXT



EXPERIMENTAL DESIGN / DATA
• n=8 animals

– Jejunal explants (ex vivo)
– Exposition Control / Mycotoxin (10µM)

• Transcriptomics
– Agilent porcine-specific microarray (60305 spots)
– Raw data processing (signal median intensity): filtering, log2 

transformation and normalization (quantiles method, Bolstad et al. 
2003)

Þ p=41336 features

• Metabolomics
– 1H-NMR
– Processing: bucketing/integration et normalization (total intensity)
Þ q=751 NMR features



INDIVIDUAL ANALYSIS
• Transcriptomics

1480 discriminant transcripts

ÞModulation of 
immunity/inflammation 
related genes

Data fusion: identification of pathways linked to process changes 
involving metabolism of both metabolites?

Þ Alanine et Lactic acid

• Metabolomics

3 discriminant metabolites



• Transcripts selection: 15000 with highest standard deviation

Þ Exposed explants are better separated from Control explants with 
the model fitted using the SOM-selected features

• Sparse CCA-O2PLSDA

– R2=60.4%

– MSEP=0.011

– 12 transcripts & 12 
metabolites were 
discriminant

• SOM-O2PLSDA

– R2=49.9%

– MSEP=0.011

– 1443 transcripts & 61 
metabolites (24 identified) 
were discriminant

DATA FUSION (1)



Oxidative stress:
• Glutathione, endogen antioxidant, correlated with:
– TXNIP (negatively): gene encoding for  a thioredoxin-binding 

protein. Thioredoxine (protects cells from oxidative stress): 
inhibition of the antioxidative function of thioredoxine Þ
accumulation de reactive oxygen species and cellular stress

– SOD (superoxide dismutase, positively): antioxidant enzyme

DATA FUSION (2): CORRELATIONS BETWEEN DISCRIMINANT FEATURES



CONCLUSION: SIMULATIONS
• SOM
– High sensitivity = selection of really correlated features
– Low specificity = selection of uncorrelated features

• Sparse CCA
– High specificity but low sensitivity
– Highly consuming-time
– Prior selection of features

Þ No universal method: combination of several methods = good 
alternative



CONCLUSION: BIOLOGICAL APPLICATION

• Data fusion
– Increased number of discriminant metabolites
– Biological link between transcripts & metabolites

• SOM
– Best discrimination of Control observations from Mycotoxin 

Exposed observations
– Biological relevance of selected features: mycotoxin exposure 

induces oxidative stress = reported in literature (Pierron et al. 
2016) but only for the transcriptomic side
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